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1. Introduction

When sampling from a multivariate normal population, the researcher is
frequently forced to cope with incomplete data. The data may be incomplete
because not all elements of the multivariate observation vectors are recorded
on every occasion (the 'missing data' problem) or because, in some cases, certain
linear combinations of the elements of the observation vectors are recorded rather
than the individual elements. Such data may arise by chance due to the peculiaritie
of the data collecting procedure or there may be economical or physical reasons
for collecting the data in incomplete form. For example, it may be costly to make
certain measurements on the experimental unit so these measurements are not taken
every time whereas the less costly measurements are made.

In a recent series of papers, L1], [2], T3] a maximum likelihood solution was
described for the problem of estimating the parameters in the multivariate normal
distribution with incomplete data. In addition to developing the estimates, expres-
sions were developed for the asymptotic variance of these estimates. These
expressions make it possible to assess the effect of the incomplete data on the
precision of the estimates.

In this paper we consider the problem of designing the data collection proce-
dure to intentionally yield incomplete data but at the same time give desired
precision while satisfying certain other requirements. Specifically, we shall

consider the problem of minimizing the cost of gathering the data subject to the



requirement that the parameters or functions of the parameters are estimated with
desired precision. We shall, for simplicity, restrict our discussion to a special,
but useful, class of incomplete data problems but this will serve to illustrate
how one might procede in the more general situations described in the papers men=-
tioned above.

In Section 2 we give a brief summary of the notation used in [1] and then
develop specific large sample varisnces formulas. The minimum cost sample
allocation problem and its solution are described in Section 3. Some extensions

are suggested in Section 4.

2. Asymptotic Variance Expressions.

The special class of incomplete data problems to be considered in this

development is that in which n., observations are taken from the p-variate normal

1

distribution, N(ul, Zl), and n_ observations are taken on the g-variate normal

2

distribution, N(ug, 22). It is assumed that q < p and further, that 22 is a

principal minor of Zl and that the vector ue consists of the corresponding
g-components of by e This is just the 'missing data' situation in which all p

measurements are made on ny occasions but only g of the measurements are made on

n2 occasions.

The elements of the matrices Zl and 22 may also be written as vectors oy and
¢, with dimension p(p+l)/2 and q(q+l)/2, respectively. The relations between
ul, Ol’ Zl and uz, 02, 22 may be described by introducing matrices C and D such

that

=Dy

Ho 1
— 1

£, =DE; D

o, =C6. .




The form of D and C should be clear from the above. The large sample covariance
matrices for maximum likelihood estimates of Ml and Zl using only the ny incomplete

observations are denoted by V@l and Vcl and given by

1
v = = 3
Wl nl 1
1
v = — U
ol nl 1

Here the matrix Ul is of dimension p(p+l)/2 and is a function of the elements of

by The rows and columns of U, are indicated by double subscripts, say (i, J)

X
for 1 <i < j <p. Specifically, the element in row (u, v), column (i, j) for

lL<u<v<p,1<i<j<pis givenby

. o, +0, &,
iu jv iv ju

The analogous quantities for estimating W, and I, using only the n_  partial
2

2 2

observations are

1
v = =3
e n, 2
1
vV = — U, .
o2 n2 2

i

The matrix U2 igs defined as is Ul in terms of the elements of 22 and may be

obtained directly from Ul by the relation

U2 = C Ul c' .

Denoting by W$ and V& the large sample covariance matrices for estimating

Ml and 21 from the combined sample, it is shown in [1] that
v, = (I +BD)Y,,
Vg = (T +AC)Vyq -




Here we have introduced the matrices A and B defined as

2 S
B = - T ZlD 22
n
2 ¢ .=l
A—-'-ﬁ-UlC U2

with N = ny + n,.
From these expressions we see that the gain in precision attainable, asymp-
totlcally, by using the n, paftial observations is given by BDV‘Q‘l and ACV’G.l for
by and Zl, respectively. We note that the gain in precision depends on the values
of the unknown parameter ¥ and is proportional to the fraction n2/N. The simple
way in which thils partial data fraction, nz/N,enters into these expressions
suggests the possibility of intentionally collecting incomplete data in such a
way as to obtain prescribed large sample variances on the estimates. Since the
gain in precision offered by the incomplete data depends on the unknown parameters,
it is clear that we can not hope to design an optimal data collecting procedure
without some prior knowledge of these parameters. This is usually the case in
sample allocation problems and appears in this case to be asking for prior knowledge
of the elements of 3. We shall now show precisely what prior knowledge is required
and will note that it is a function of the elements of ¥ whose magnitude may be
known, at least approximately.
Let the elements of by be denoted by m i=1, ..., p and the elements of
Ho by m,, i ¢ I where I is the appropriate subset of the integers 1, ..., D.
Denote the elements of Zl by Uij’ i, =121, «.., pand of ¥

5 by Uij’ i, J e I,

by mlJ. Denote by 6i

2

the vector of regression coefficients if the ith variable for i ¢ I is regressed

The elements of Zml are denoted by ot and those of 2

1

on the variables indexed by I. Thus the uth component of 61 is given by




2 .
The corresponding multiple correlation coefficients are denoted by R.l and given by

2
R, = 6!y b6,./0.. = <%
i i 72 1/ 11 veT

5, o [o.. .

iu Tiw Tii

We shall now develop specific expressions for the variances of estimates of certain
parameters and functions of parameters as obtained from the results described
above, In particular, we want to look at the asymptotic variances for estimates

of m; and aii’ i=1, .., p and Bi’ i=2, ..., p where the Bi are regression

coefficients obtained by regressing the first variable on variables 2 through p.

2.1l. Variance of Estimates of mi

If we denote by.V(mi) the large sample variance of the maximum likelihood
estimate of the parameter mi,then from above we see that the gain in precision

is given by

2 , i
BDVul = - Hzﬁ ZlD 22 DZl
and we obtain
/N iel
ii

]
;

V(mi)
Po 2
.(l T Ri)cii/nl id1.

2.2. Variance of Estimates of Gij

The gain in precision is determined by

o ~1
= — mT———— !
ACVcl = nlNUl C U2 C Ul .

In [1] it is shown that the element in row (i, j) column (u, v) of the matrix
-1

t 3 o
Ul C U2 is




by

1 t . vt
k z Griwur z ijwv oz GrjwuI z dfiw >
uv rel tel rel tel

for 1<i<j<pandufvelwherek =2foru=vandk =1 foru # v,

Note that, for example

0 ifdu, iel

s o .wF =41 i=nu
1

rel

8., 1 ¢ I.

%

and simplifying shows that the matrix U, C' U~l CU

Multiplying on the right by C U 1 5
*

1

has in row (ij),column (ij) the quantity

g,.0,, + G?. for ij ¢ I
ii ja i
and

» 6,0, + ¥ &, 0. T 6 U.Vfori;jéI.

...C, R . .
z 61u iu VIV e twdw [y odvid

uel vel

In particular, for i = J we have

2 .
2 Oii for i e I

2 2 .
2(R] Gii) for i ¢ I .

If we let V(dii) denote the large sample variance of the maximum likelihood estimate

of ¢.. we have
ii

2 &° /N iel
11
v(o,,) = 4

n
2 b 2 .
(l"ﬁr“RJE@ii/“l Lel.

e




2.3. Variance of Estimates of the Regression Coefficients, Bi'

In many applications, we are not interested in the Gij as such but, rather,
certain functions of them, the most common being regression coefficients. If we

write the matrix ¥ and its inverse in partioned form as

11

21

12

22

o

O_ll

21

Z12

22 1

-y

then the vector of regression coefficients for regressing the first variable on

the remaining p-1 variables is given by

1 1 .21
B“222221“'611Z .

The elements of this vector will be denoted by Bi’ i=2, +ve, p. The large sample
covariance matrix for the maximum likelihood estimates of B from the incomplete

data is given by
THI + AC)VGlT .

Here T is the matrix of derivatives of B with respect to the Gij' In particular,
the element in row (u, v) colum k for 1 <u<v <p, k=2, ..., p is agk/ac&v .

Alternately, we may write

where A-l is the matrix of partial derivatives of the elements of Z-l with respect
to the elements of ¥ and I' is the matrix of derivatives of B with respect to the
elements of ¥ Y. In particular, from [1] we have in row (i, j) column (s, t)

of’ Anl the quantity




. kl (Glscgt . Uitcjs>
iJ

for 1 <1 <j<pandl<s <t <p. The matrix I' is given by

.
slk/(cll)2 in row 11, column k, k = 2, ..., P

V=4 = —%T in row 1k, column k
(+]
e elsewhere.

9

Combining we see that row (i, j), column k of T is given by

B B dljcki>
11 0 ’
)
1]
As shown in [17,

1
=--n—-KA
1

Vo1

where K is the diagonal matrix with k _ in the (u, v)JGh diagonal position. Thus

if the incomplete data is ignored, the large sample variance is given by

1
1 = - e TP
T VO-lT - n T KF .

1
In view of the above development, we see that row k, column h of this matrix is

given by

1 <Gkh _ leclh/cll>
n cll
1
or in matrix form we have the familiar result
. T S §
TVRT = st Lop
n,9

To investigate the gain in precision afforded by the incomplete data we consider

the matrix T'ACVGlT. Looking first at the matrix T'AC we see from the expressions

for T, A and VOl that we may write




..9..

11

2 -1
T S < oX 1 .
AC o ' K¢ U2
Using the expression for U;I from [1] we see that in row (u, v), tolum (i, J)
of the matrix K¢' U;l we have
1 C N
e Q@luwav + lewJu) for (u, v) ¢ I
iJ

0 for (u, v) ¢ I .

Recalling the form of I' developed earlier we see that if the index set I does
not contain the integer 1,then T'AC = - %% I' ke’ U;l is the zero matrix. That
is, 1if the partial data does not include the dependent variable in the regression
problem then no gain in precision is achieved for estimating the regression
coefficients. An investigation of the estimation procedure described in (1]
shows that the estimates of the regression coefficients from the combined data
are, in fact, identical to those obtained by ignoring the partial data if the
partial data does not include the dependent variable. We remark in passing that
the restriction does not affect the gain in precision described earlier for
estimating my and cij'

Since the only interesting situation is that in which the integer one is in
I we hereafter assume, without loss of generality, that I = {l, 2y eees q} .
That is, the additional observations are made on the first g of the p wvariables.

To compute the reduction in variance due to the incomplete data we have

n

2 -
Tl . 1 H
ACVng Hzﬁ ' xc U2

Lxr

which is readily computed from the preceding results. After some simplification

we obtain in row h, column k,




-10-

2n
__2 ( 11 ll>2 { - - ( hk _ 1h 1k ll) 1¥}
ENA /o (B = )(By - o) + o o w0 /o) 20
for h, k=2, .c., Q
2n
2 (11, 11N\2
- n N (w /o > {Bk(gh - O!h)} for h =2, vo0, ¢
k=g+l, ees, P
2n
2 (11, 11\2 1
) nlN (('U /G > {Bhskj for h’ k= q+lﬂ coes P oo

Here we have introduced the vector « with components aj, J =2, eass p, which
are the regression coefficients for regressing the first variable on variables
2 through q.

Denoting by V(Bi) the large sample variance of the maximum likelihood

estimate of 8 based on the N observations we have

v(B;) = ;li{(ollcii - ()2} .
{1 - _2_’1;_2 (wll)z[(Bi _ “1)2 . (wllwii . (wli)2>/2(wll)2]
/<clldii ) (Uli)2>}
for i =2, «v., q

and
V(Bi) - E}_{(Glloii . (cli)2>/(011)2}{1 . irNi% ()2 B?l/<gllcii _ (011)2>}

Ll

for 1 =qg+l, «ees D &

In summary, we see that the large sample variance expressions for estimating

m,, 9.. or 8, are all of the form
i’ Tii i

1
AAOREEE EO)




where ﬁk Vl(d) represents the variance if only the n, complete vectors are used and
1

1
£(0) is a function of the elements of ¥ with the property that 0 < £(o) < 1.

In the case of ms and dii we have seen that for i = 1, ..., Q, or more generally,
ie I that £(¢) = 1 and for i = q+l, ..., p, or i ¢ I, that f(o) depends only on

R?, the multiple correlation coefficients obtained when regressing variable 1 ¢ I
on the variables in I. We have just noted that when considering Bi’ the expressions
for f(G) are more complex, requiring additional knowledge about the parameters,

6ij. There are numerous alternate expressions for these £(0) which may be

obtained, The choice of these depends on the form of the prior information
available. For example, expressions involving only multiple R2 for various
regressions appear to be most palatable. To illustrate, let Rip, Riq, and Rip.i
denote the multiple correlation coefficients for regressing variable one on
variables 2 through p, 2 through q, and 2 through p excluding variable i,
respectively. Let pii.p denote the partial correlation between variables 1 and

i given the remaining p-2 variables and let Rip and R?q denote multiple correlation
coefficients for regressing variable i on variables 1 through p and 1 through q,

respectively, excluding variable i. The following relations then enable us to

obtain alternate expressions for V(Bi).

o 1i, 11 __1ip1
p; = -9 /o @ == fo
11 -1 2 11 -1 2
(o 9, =1 - Rlp (w Oil) =1 ~- qu
il (-1 2 il y-1 . 2
(67700 7 =1 - Ry, (0703;) 7 =1 - Ryy
> 12111 > Rip - Rip 3
o2 = (MH2/ets o2, =i dp.l
li.p li.p 1 - R2 .
lp.i

To illustrate, the expression for f£(¢) in the expression for V(Bi) for

i=qg+l, +v., p is given by
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2
1lp.1i

) .

(o) = 2(1 - Rip) (1 - Riq) (Rip - R

For i = 2, ..., q, the expression is more complex, involving also the gquantities
2 a 2
Rip an Riq'

In the next section we discuss the problem of determining optimal sample
allocat ions based on prior knowledge of the £(0). Since these quantities arise
from asymptotic variance expressions, it is natural to ask how appropriate these
expressions are for small samples. This is, in general, gquite difficult but
Monte Carlo studies for p = 3 indicate that the asymptotic variances are very
close to the small sample variances for ny and n, of the order of 15. This
limited evidence is offered only to suggest that the sample allocations to be

developed may be reasonably good especially in view of the, less than exact,

prior information.

3. The Optimum Sample Allocation Problem.

In this section we consider the problem of minimizing the cost of collecting
the data subject to meeting requirements on the variances of the parameter estimates.
It is assumed that the variance requirements are specified in terms of what would
be obtained if all complete vectors are observed, Thus, in general the restrictions
are of the form

Ly (o)L - 2 e(0)) <2 v,(0)
ny 1 N - m 1
where % Vl(e) is the variance obtailned if m complete vectors are observed.

To be more specific, consider the problem of estimating only the m, and

the Gii' It is natural to ask for higher precision for i ¢ I, say 1 =1, ..., 4,

that for i ¢ I. Thus we shall require V (8)/M for i =1, ..., q and v, (9)/m




for i = q+l, ..., p, where M > m. Since £(¢) =1 for i = 1, ..., q the constraints

for this problem are

N> M
n
1.2
o\ oW R/ <d
1 - mnm

i=q+l, ...,P

o
i.__l

n
2u>
- —— < =
<l ¥ Ri) Suc

Assume further that the cost of gathering the data is Cl for observing

g

Xl’ 0ees Xq and 02 for observing Xq+l’ eees Xp,where C2 is considerably greater
than Cl‘ This is just the situation in which one would be tempted to gather some

incomplete data. The cost of gathering the data is thus given by

C = nl(Cl + Cz) + 0,0y = NGy + njc, .

1 172

To determine the optimal values of nl and n, we must solve the constrained

optimization problem of minimizing C subject to restrictions of the type illustrated

above and the obvious requirements that ny and n, be non-negative. Mathematical
programming algorithms are available for solving such problems but we shall now

see that the problem can be easily solved analytically. To develop the solution

we first discuss a special case in sub-section 3.1 then develop the general solution

in sub=-section 3.2.

3.1. A Single Complete Sample Size Specification.
Consider the problem of minimizing C subject to the constraints

n
_l_( .2 ><l i e
s 1= fj(c) S=d=1, e 7

N

Iv
=

, I

>
Nys Ho 2
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where the fj(d) are obtained from the expressions for V(mi), V(dii) and V().
The essential point to notice is that, as in our previous illustration, the right-
hand side of the inequalities, j = 1, ..., J, is always 1/m. This is just the
situation in which the variance requirements on all parameters for which (o) <1
are based on the same complete sample size, namely m.

It can be shown in this case that only one of the inegualities, j =1, s, J,
is ever active, namely that constraint for which fj(G) is maximum. ILetting

F = max f (0)
PR

the problem described above is thus equivalent to that of minimizing C subject

to the constraints

n
L(-gr)=t
1
N> M
>
nl, n2 > 0.

The solution of the problem is quite simple and is shown in Table I for various

situations involving the relative magnitudes of C, and Cl as well as M and m.

2
To simplify Table I we have introduced the symbols

mM1-F)/(M~-nF)

il

My

[}
it

o m((l -F) + (F(1 - F)Cg/Cl)§>

and

[92]
i

o= ner (1 - 1)/, - (1 - B

One advantage of being able to solve the problem analytically as opposed to
a numerical solution is that the user can easily see how sensitive his solution

is to his prior knowledge of F.




Magnitudes of Cl, C2, M, m | Solution
1. mSM  C/c, <8 n, =n, 0, =M-n,
2. mSM  C,/C 28, n, =n
or n, = no(m - nl)/(nO - m(l - F))
m > M (:2/0;L > (1 -F)/F
3. m>M Cz/le(l—F)/F ny=m n,=0

TABLE 1. Solutions for Single, Complete Sample Size Specification

3.2. Different Complete Sample Size Specifications.
If the variance requirements are based on different, complete sample sizes,
then no single constraint dominates the others. In this case we wish to minimize

C subject to the constraints

1 o
—— - — <Z = .o
B (l T fj(0)> IL/m‘j J=1, eees J
N>M
>
0y n2 0

where the m.‘j are generally different.

An approximate solution to this problem can be obtained by computing the
solution described in Table I replacing F by fj(G) and m by mj for j =1, eea, J
and selecting from these solutions the one which gives minimum cost.

This approximate solution may well be optimal. The optimality is easily

verified by checking to see if the selected values of nl and n2 satisfy all of the
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constraints. If so, the solution is optimal. If not, the solution is at the

intersection of two constraints, say,

n
= Q-En@) <>
1 1

n
L ( _ -2 > <L
-5 5(9)) 2 .

=

The point of intersection is given by,

=]
!

1 =, (fy = £5)/(myfy - myf,)

]
!

o = nl(ml - nl)/(nl - ml(l - fl)) .

Evaluating C for each possible intersection for which nl and n2 3 0 and
n, + n, 2 M and selecting that solution which minimizes C will then yield the
optimum solution.

The general solution described in this section is conceptually quite
simple but its practicality depends on the number of constraints, J, and the

degree of belief in the prior estimates of the fj(d). The approximate solution

indicated above may well be adequate in most cases.

4, Extensions.

We have developed the large sample variance formulas and discussed the
optimal sample allocation problem for a particular case of the incomplete data

problem. That is, the situation in which we make ny observations on variables 1

through p and n. observations on variables 1 through g for ¢ <p. In (1] ang [2]

2

much more general incomplete data problems are considered but in general the

role of the sample size is not so simple. One class of problems, called 'nested’,
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does suggest further consideration. To illustrate, suppose that in addition to

the above we make n_ observations on variables 1 through r for r < g. This is

3

a 'nested' situation. In this case, the variance expressions are of the form

(1 - fl—-—f (o) - A <f () - -—-—f c)>> v(8)/n,

2

where N, = n, + n,, NS =N, + Ny and the fi(G) are functions depending on the

cij' The development of the variance formulas proceeds as in Section 2 and the
sample allocation problem is the natural exteunsion of that described in Section
3. The solution is generally more complicated requiring, usually, a numerical

solution at least for the case of different, complete sample size specifications.
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